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A NONSTATIONARY AXISYMMETRIC MOTION OF GAS

V. A, Dvornikov UDC 533.601,1

Axisymmetric nonstationary and irrotational motions of gas can be described by the system of equations
[1],

o (NT)
cr

a da 8 \ or
r7“+Nra—j+T—ég+(y,—1)a[ +6—9+N+Tctg0]=0, e}

*’a_f‘: + LN+ T2+ aiy— 1)) = O,

N

3 d
w5 (IN=0a=30 p=4¢",

where N and T are the radial and the tangential components, respectively, of the gas velocity; a is the square
of sound velocity; r, 6 are the spherical coordinates,

A class of solutions will be found for system (1) assuming that the velocity components N, T depend on
the angle 6 and the time t only. It follows from the third equation in (1) that

N=1(8,1), T=7fo(0, t). @)

By inserting N and T as given by (2) into the second equation of (1), an expression is obtained for the square of
sound velocity in terms of the function f(8, t)

=—(y—0)rfi + v, 1], 3

where (6, t) is an arbitrary function. The use of (2) and (3) reduces the first equation in (1) to the following
system:

f=t9(8)+ 2 (8), w-+A(8) 12 B(8) ¢+ p(8) = 0. @
(v — 1) ¥ (2 + foctg 8 + foo) + foe = O,
‘where
A©) =y —1) ¢+ (v— 1) 0009 + ¢'* + (v — 1) pppctgd; B (8) = (2y — 1) 29 + (¥ — 1) zoow -+ 2600 + (v — Dzaclg 0;
p(6) is an arbitrary function. Since 6 and t are independent variables, therefore (4) implies an overdeter-
mined system of equations for finding ¢(8), x(8), u(é)
(5)

(v — 1) (20 + goctg 0 -+ poo) A + ppdo = 0,
(¥ — 1) (22 + 25 ctg 0 + z6) A + z0Ay + 2B (v — 1) (20 + 9o ctg 0 + e) + 29080 = 0,
(v — 1) (20 - Poctg 0 + gog) i -+ gopa + B (v — 1) (22 + zpetg 0 4
+ 2¢) -+ 2¢Bg == 0.
(v — 1)(2z + 26 ctg 0 + 200) p + wopo = 0.
The consistency of (5) is now analyzed. By assuming that (p'e =0, xg = 0, one can eliminate from (5) A'g, B'e ,
u'o. As a result, one arrives at a relation between x and ¢,

[Azo/ 96 + 2n¢o/zs — 2B][®/9s — X/z5] = 0, (6)
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where @ = (2 + ppctg 0 + goa)(y — 1); X =(2z + zoctg 8 + zee J(¥ — 1)
By setting the second factor equal to zero, a differential relation is obtained between x and ¢,
r=q [01 S‘ 9o 2Rdp + cg},whereR = exp {2 5 ® ((pé)'id(}]. (N
Under condition (7), system (5) is as follows:
for A =0 -one has
AD + qodo =0, B=c A, p=c,4; {8
for A =0 one has
2y — 1) ¢* + (7 — 1) Goo® + 96" + (¥ — 1) ppo cig 6 = 0, 9)
®B + ¢oBo = 0, Dy + gopg = 0.

The second equation of (8) imposes an additional differential relation on x and ¢, which together with A and B,
can be given by

A ["3 - 'T'("/(Fé] . cp[x - ‘Wé/‘fé] =0 (10)

By substituting the value of x from (7) into (10), one arrives at an equation for ¢

A [L—*l—:ﬁ' - 5. ¢ 2Rdg — R/(p} — R =0.

"l.
By differentiating the above with respect to 6, one obtains the first equation (8),
AD + gody = 0.
Thus, system (5) under condition (7) is consistent,

System (9) is now analyzed. The additional differential relation between x and ¢ in system (9) deter-
mines the second equation. The expression for B from (4) under the condition (7) and for A =0 is

B = —c9R.
By substituting this value of B into the second equation in (9), one finds
R[(2y — 1) 9* + (v — 1) poo® + 06" -+ (v — 1) @6 getg 8] = 0,
which implies that (9) is consistent. Then one has i =c3¢R as well.
The case is now considered when the first factor in (6) vanishes, i.e.,
w = Baa/go — (2i4)/(245). (11)
Inserting (11) in the last two equations of (5) one arrives at a system for x and ¢

2B[X + Fyeo/F]— A[FX + 2Fsay — OF x4/ o] + 2Bszy = 0, (12)
B[®F + goFs + X]— AqoFFg+ 2Bgae =0,

where F =x'9/ o '9 By subtracting the first equation from the second, one finds that
[ 4o/ 96 — Bl (zas6 — zo®s0)/¥6 -+ X — Do/p] = 0. (13)
By setting the first factor equal fo zero, one finds
B = Azo/ %o (14)
If one substitutes B from (14) into the second equation of (12), one arrives at the expression
A[F2® — FX - 2Fjzg] = 0. (15)

The equation A =0 together with (14), (11) implies that B=0, u =0; the latter complies with the particular case
of the condition (7). The vanishing of the second factor together with (15) yields an equation for x

(v — 3)(z6e®’s — Pooze) + 2 (v — 1)(2ps — pzp) = 0,

the second equation for ¢ being given by (14). A consistent solution of these two equations is given by x =c¢,
which also agrees with a particular case of condition (7).



If one sets the second factor in (13) equal to zero, one obtains a differential relation between x and @3
employing the latter, the second equation in (12) is given in the form

(209 — z90)[(1 — 29) A + (37 — 2)2 ¢¥/y] = 0-

The vanishing of the first factor implies that x=c¢. This relation between x and ¢ has previously been ana-
Iyzed. The vanishing of the second factor results in an equation for ¢,

2y — 1 — 3y — 22y — I 9* + 90 + (v — 1) goo -+ (¥ — 1) 9o otg 8=0,
which together with the first equation (5) admits a consistent solution only given in the form @=0.

The case of (p’@ =0, x'g =0 is now analyzed. For ¢ 'g=0 Eq. (5) implies that ¢ =0. By using {4) one obtains
the stationary state of the flow, .

N=z(0), T =2zq(0), a®=(y— 1) n(9).

Under the conditions of a stationary state, system (1) implies the Bernoulli— Euler integral which imposes a ,
differential relation between x and p given by (x2 +x'92)/2 +u = const. If this equation is taken into account to-
gether with the last equation in (5), one can bring the system (1) to a single equation for the function x(9),

zgp (a2 — xé;) + (20— o)z + a'z ctg =0,

at=—(y—1)(z*+25)/2+ ¢,
which describes the axisymmetric conical gas flow; it was analyzed in [2, 3]. The case of x'g =0 (x = 0) results
in p=0, B=0, A=0. For x=0one has B=0, u=cA.
Thus, system (5), fully analyzed for consistency, is described in the case of a nonstationary state of gas
flows by the following functions of the variables r, 6, t:
N® t)=gq[t+e+c | 97 ?Rdg],
70, ) = go[t+ e+ ([ ™2 Rdg -+ ¢'R))
a (8, 1) = — (v — Dlor + (&2 + c,t + c;)/( Rep sin 0)*1],

where ¢ can be found from the equation

[2y— 1) 02+ (v — 1) pgo ctg 0 + o + (v — 1) ppoo] D -
+2y — 1) @2+ (v — 1) 9poctg 0 + g5 -+ (v — 1) ppoolo w0 = 0. (16)

Two particular solutions of Eq. (16) are available. The first one is ¢ =c4 cos (6 +¢,). The other one can be
found from the equation

@y —1) 9*+ (7 — 1) pgactg 0 + g5 -+ (7— 1) pgag = 0. (17)

Equation (17) is transformed to a Legendre equation with the aid ofthe substitution (p=y(')"1)/ Y . For the
latter the general solution was found in {4] which for ¢ can be written as
vo-1

p= [csF (-— A cosz,e) +c;c080 - F (f Ao, 2 cos? G)JT,

where vy =(3y —2)/2(y ~ 1); F is the hypergeometric function.
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