- 3. A. A. Kon'kov and A. V. Il'metov, "Experimental study of the pressure behind reflected shock waves in argon at Mach numbers of 10-35," Inzh.-Fiz. Zh., 28, No. 4 (1975).
- 4. I. V. Pleshanov, "Calculation of the parameters of a chemically reacting gas behind incident and reflected shock waves," in: Thermophysical Properties and Gasdynamics of High-Temperature Media [in Russian], Nauka, Moscow (1972).

A NONSTATIONARY AXISYMMETRIC MOTION OF GAS

V. A. Dvornikov UDC 533.601.1

Axisymmetric nonstationary and irrotational motions of gas can be described by the system of equations [1],

$$r\frac{\partial a}{\partial t} + Nr\frac{\partial a}{\partial r} + T\frac{\partial a}{\partial \theta} + (\gamma_{i}^{r} - 1) a \left[\frac{\partial (Nr)}{\partial r} + \frac{\partial T}{\partial \theta} + N + T \operatorname{ctg} \theta \right] = 0,$$

$$\frac{\partial N}{\partial t} + \frac{\partial}{\partial r} \left[(N^{2} + T^{2})/2 + a/(\gamma - 1) \right] = 0,$$

$$\frac{\partial N}{\partial \theta} - \frac{\partial}{\partial r} (Tr) = 0, \quad a = \frac{dp}{d\rho}, \quad p = A\rho^{\gamma},$$
(1)

where N and T are the radial and the tangential components, respectively, of the gas velocity; a is the square of sound velocity; r, θ are the spherical coordinates.

A class of solutions will be found for system (1) assuming that the velocity components N, T depend on the angle θ and the time t only. It follows from the third equation in (1) that

$$N = f(\theta, t), T = f'_{\theta}(\theta, t). \tag{2}$$

By inserting N and T as given by (2) into the second equation of (1), an expression is obtained for the square of sound velocity in terms of the function $f(\theta, t)$

$$a = -(\gamma - 1) \left[rf_t' + \psi(\theta, t) \right], \tag{3}$$

where $\psi(\theta, t)$ is an arbitrary function. The use of (2) and (3) reduces the first equation in (1) to the following system:

$$f = t\varphi(\theta) + x(\theta), \quad \psi + A(\theta) t^2/2 + B(\theta) t + \mu(\theta) = 0,$$

$$(\gamma - 1) \psi(2f + f_{\theta}' \cot \theta + f_{\theta\theta}') + f_{\theta}' \psi_{\theta}' = 0,$$
(4)

where

$$A\left(\theta\right)=\left(2\gamma-1\right)\phi^{2}+\left(\gamma-1\right)\phi_{\theta\theta}\phi+{\phi'}^{2}+\left(\gamma-1\right)\phi\phi_{\theta}^{\prime}\operatorname{ctg}\theta;\quad B\left(\theta\right)=\left(2\gamma-1\right)x\phi+\left(\gamma-1\right)x_{\theta\theta}\phi+x_{\theta}^{\prime}\phi_{\theta}^{\prime}+\left(\gamma-1\right)\phi x_{\theta}^{\prime}\operatorname{ctg}\theta;$$

 $\mu(\theta)$ is an arbitrary function. Since θ and t are independent variables, therefore (4) implies an overdetermined system of equations for finding $\phi(\theta)$, $x(\theta)$, $\mu(\theta)$

$$(\gamma - 1) \left(2\varphi + \varphi_{\theta}' \operatorname{ctg} \theta + \varphi_{\theta\theta}' \right) A + \varphi_{\theta}' A_{\theta}' = 0,$$

$$(\gamma - 1) \left(2x + x_{\theta}' \operatorname{ctg} \theta + x_{\theta\theta}' \right) A + x_{\theta}' A_{\theta}' + 2B \left(\gamma - 1 \right) \left(2\varphi + \varphi_{\theta}' \operatorname{ctg} \theta + \varphi_{\theta\theta}'' \right) + 2\varphi_{\theta}' B_{\theta}' = 0,$$

$$(\gamma - 1) \left(2\varphi + \varphi_{\theta}' \operatorname{ctg} \theta + \varphi_{\theta\theta}'' \right) \mu + \varphi_{\theta}' \mu_{\theta}' + B \left(\gamma - 1 \right) \left(2x + x_{\theta}' \operatorname{ctg} \theta + \varphi_{\theta\theta}'' \right) + x_{\theta}' B_{\theta}' = 0,$$

$$(\gamma - 1) \left(2x + x_{\theta}' \operatorname{ctg} \theta + x_{\theta\theta}' \right) \mu + x_{\theta}' \mu_{\theta}' = 0.$$

$$(\gamma - 1) \left(2x + x_{\theta}' \operatorname{ctg} \theta + x_{\theta\theta}' \right) \mu + x_{\theta}' \mu_{\theta}' = 0.$$

The consistency of (5) is now analyzed. By assuming that $\phi'\theta \neq 0$, $x'\theta \neq 0$, one can eliminate from (5) $A'\theta$, $B'\theta$, $\mu'\theta$. As a result, one arrives at a relation between x and ϕ ,

$$\left[Ax_{\theta}'/\phi_{\theta}' + 2\mu\phi_{\theta}'/x_{\theta}' - 2B\right]\left[\Phi/\phi_{\theta}' - X/x_{\theta}'\right] = 0,$$
(6)

Tomsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 94-98, September-October, 1978. Original article submitted September 22, 1977.

where $\Phi = (2\varphi + \varphi'_{\theta}\operatorname{ctg}\theta + \varphi''_{\theta\theta})(\gamma - 1); X = (2x + x'_{\theta}\operatorname{ctg}\theta + x''_{\theta\theta})(\gamma - 1).$

By setting the second factor equal to zero, a differential relation is obtained between x and φ ,

$$x = \varphi \left[c_1 \int \varphi^{-2} R d\varphi + c_2 \right], \text{ where } R = \exp \left[2 \int \varphi \left(\varphi_{\theta}' \right)^{-1} d\theta \right]. \tag{7}$$

Under condition (7), system (5) is as follows:

for $A \neq 0$ one has

$$A\Phi + q_{\theta}A_{\theta}' = 0, \ B = c_{3}A, \ \mu = c_{4}A;$$
 (8)

for A = 0 one has

$$(2\gamma - 1) \varphi^{2} + (\gamma - 1) \varphi_{\theta\theta}^{"} \varphi + {\varphi_{\theta}^{'}}^{2} + (\gamma - 1) \varphi \varphi_{\theta}^{'} \operatorname{ctg} \theta = 0,$$

$$\Phi B + {\varphi_{\theta}^{'}} B_{\theta}^{'} = 0, \quad \Phi \mu + {\varphi_{\theta}^{'}} \mu_{\theta}^{'} = 0.$$
(9)

The second equation of (8) imposes an additional differential relation on x and φ , which together with A and B, can be given by

$$A\left[c_3 - x_{\theta}/\varphi_{\theta}'\right] - \varphi\left[x - \varphi x_{\theta}'/\varphi_{\theta}'\right] = 0. \tag{10}$$

By substituting the value of x from (7) into (10), one arrives at an equation for φ

$$A\left[\frac{c_3-c_2}{c_1}-\int \varphi^{-2}Rd\varphi-R/\varphi\right]-\varphi R=0.$$

By differentiating the above with respect to θ , one obtains the first equation (8),

$$A\Phi + \varphi'_{\theta}A'_{\theta} = 0.$$

Thus, system (5) under condition (7) is consistent.

System (9) is now analyzed. The additional differential relation between x and φ in system (9) determines the second equation. The expression for B from (4) under the condition (7) and for A = 0 is

$$B = -c. \sigma R$$

By substituting this value of B into the second equation in (9), one finds

$$R[(2\gamma - 1)\varphi^2 + (\gamma - 1)\varphi_{\theta\theta}^{\prime}\varphi + \varphi_{\theta}^{\prime 2} + (\gamma - 1)\varphi_{\theta}^{\prime}\varphi\operatorname{ctg}\theta] = 0,$$

which implies that (9) is consistent. Then one has $\mu = c_3 \varphi R$ as well.

The case is now considered when the first factor in (6) vanishes, i.e.,

$$\mu = Bx_{\theta}'/\phi_{\theta}' - (x_{\theta}'^2 A)/(2\phi_{\theta}'^2). \tag{11}$$

Inserting (11) in the last two equations of (5) one arrives at a system for x and ϕ

$$2B[X + F_{\theta}x_{\theta}'/F] - A[FX + 2F_{\theta}x_{\theta}' - \Phi F x_{\theta}'/\phi_{\theta}'] + 2B_{\theta}'x_{\theta}' = 0,$$

$$B[\Phi F + \phi_{\theta}'F_{\theta}' + X] - A\phi_{\theta}'FF_{\theta}' + 2B_{\theta}'x_{\theta}' = 0,$$
(12)

where $F = x' \theta / \phi' \theta$. By subtracting the first equation from the second, one finds that

$$[Ax'_{\theta}/\varphi'_{\theta} - B][(x''_{\theta\theta}\varphi'_{\theta} - x'_{\theta}\varphi''_{\theta\theta})/\varphi'_{\theta} + X - \Phi x'_{\theta}/\varphi'_{\theta}] = 0.$$
(13)

By setting the first factor equal to zero, one finds

$$B = Ax_{\theta}'/\phi_{\theta}'. \tag{14}$$

If one substitutes B from (14) into the second equation of (12), one arrives at the expression

$$A\left[F^{2}\Phi - FX + 2F_{\theta}x_{\theta}'\right] = 0. \tag{15}$$

The equation A = 0 together with (14), (11) implies that B = 0, $\mu = 0$; the latter complies with the particular case of the condition (7). The vanishing of the second factor together with (15) yields an equation for x

$$(y-3)(x_{\theta\theta}^{"}\phi_{\theta}-\phi_{\theta\theta}^{"}x_{\theta}^{"})+2(y-1)(x\phi_{\theta}^{"}-\phi_{\theta}x_{\theta}^{"})=0,$$

the second equation for φ being given by (14). A consistent solution of these two equations is given by $x = c \varphi$, which also agrees with a particular case of condition (7).

If one sets the second factor in (13) equal to zero, one obtains a differential relation between x and φ ; employing the latter, the second equation in (12) is given in the form

$$(x_0'\varphi - x\varphi_0')[(1-2\gamma)A + (3\gamma-2)^2\varphi^2/\gamma] = 0.$$

The vanishing of the first factor implies that $x = c\varphi$. This relation between x and φ has previously been analyzed. The vanishing of the second factor results in an equation for φ ,

$$[2\gamma - 1 - (3\gamma - 2)^2/(2\gamma^2 - \gamma)] \varphi^2 + \varphi_{\theta}^2 + (\gamma - 1) \varphi_{\theta\theta}^2 \varphi + (\gamma - 1) \varphi \varphi_{\theta}^2 \cot \theta = 0$$

which together with the first equation (5) admits a consistent solution only given in the form $\varphi = 0$.

The case of $\phi'_{\theta} = 0$, $x'_{\theta} = 0$ is now analyzed. For $\phi'_{\theta} = 0$ Eq. (5) implies that $\phi = 0$. By using (4) one obtains the stationary state of the flow,

$$N = x(\theta), T = x_{\theta}'(\theta), a^2 = (\gamma - 1) \mu(\theta).$$

Under the conditions of a stationary state, system (1) implies the Bernoulli-Euler integral which imposes a differential relation between x and μ given by $(x^2+x'_{\theta}^2)/2+\mu=\text{const.}$ If this equation is taken into account together with the last equation in (5), one can bring the system (1) to a single equation for the function $x(\theta)$,

$$x_{\theta\theta}(a^2 - x_{\theta}^2) + (2a^2 - x_{\theta}^2)x + a^2x_{\theta}\cot\theta = 0,$$

 $a^2 = -(y - 1)(x^2 + x_{\theta}^2)/2 + c.$

which describes the axisymmetric conical gas flow; it was analyzed in [2, 3]. The case of $x_{\theta}^{\dagger} = 0$ ($x \neq 0$) results in $\mu = 0$, B = 0, A = 0. For x = 0 one has B = 0, $\mu = c_1 A$.

Thus, system (5), fully analyzed for consistency, is described in the case of a nonstationary state of gas flows by the following functions of the variables r, θ , t:

$$\begin{split} N\left(\theta,\,t\right) &= \phi \left[t + c_2 + c_1 \int \phi^{-2} R d\phi \right], \\ T\left(\theta,\,t\right) &= \phi'_{\theta} \left[t + c_2 + c_1 \left(\int \phi^{-2} R d\phi + \phi^{-1} R\right)\right], \\ a\left(\theta,\,t\right) &= -\left(\gamma - 1\right) \left[\phi r + \left(c_3 t^2 / 2 + c_4 t + c_5\right) / \left(R \phi'_{\theta} \sin \theta\right)^{(\gamma - 1)}\right], \end{split}$$

where φ can be found from the equation

$$[(2\gamma - 1) \varphi^{2} + (\gamma - 1) \varphi \varphi_{\theta}' \operatorname{ctg} \theta + \varphi_{\theta}'^{2} + (\gamma - 1) \varphi \varphi_{\theta\theta}''] \Phi + \\
+ [(2\gamma - 1) \varphi^{2} + (\gamma - 1) \varphi \varphi_{\theta}' \operatorname{ctg} \theta + \varphi_{\theta}'^{2} + (\gamma - 1) \varphi \varphi_{\theta\theta}'']_{\theta}' \varphi_{\theta}' = 0.$$
(16)

Two particular solutions of Eq. (16) are available. The first one is $\varphi = c_6 \cos (\theta + c_7)$. The other one can be found from the equation

$$(2\gamma - 1) \varphi^{2} + (\gamma - 1) \varphi \varphi_{\theta}^{2} \operatorname{ctg} \theta + \varphi_{\theta}^{2} + (\gamma - 1) \varphi \varphi_{\theta}^{2} = 0. \tag{17}$$

Equation (17) is transformed to a Legendre equation with the aid of the substitution $\varphi = y^{(\gamma-1)/\gamma}$. For the latter the general solution was found in [4] which for φ can be written as

$$\varphi = \left[c_6 F\left(-\frac{v}{2}, \frac{1+v}{2}, \frac{1}{2}, \cos^2\theta\right) + c_7 \cos\theta \cdot F\left(\frac{1-v}{2}, 1+\frac{v}{2}, \frac{3}{2}, \cos^2\theta\right)\right]^{\frac{\gamma-1}{\gamma}},$$

where $\nu = (3\gamma - 2)/2(\gamma - 1)$; F is the hypergeometric function.

LITERATURE CITED

- 1. N. E. Kochin, I. A. Kibel¹, and N. V. Roze, Theoretical Hydromechanics [in Russian], Pt. 1, Moscow (1955).
- 2. B. M. Bulakh, Nonlinear Conical Gas Flows [in Russian], Nauka, Moscow (1970).
- A. Ferry, Aerodynamics of Supersonic Flows [Russian translation], Gostekhizdat, Moscow-Leningrad (1952).
- 4. E. Kamke, Handbook of Ordinary Differential Equations [in German], Chelsea Publ.